Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials

نویسندگان

  • N. Katsarakis
  • E. N. Economou
  • Ekmel Ozbay
چکیده

We present free-space microwave measurements on composite metamaterials (CMMs) consisting of split ring resonators (SRRs) and wires either on the same dielectric board or on alternating boards. Our experimental results disprove the widely held belief that the occurrence of a CMM transmission peak within the stop bands of the SRRs alone and wires alone constitutes a clear demonstration of left-handed (LH) behavior. This belief is based on the assumption that the stop bands of SRRs alone and wires alone are not affected by the simultaneous presence of both. We show here that this assumption is wrong: The effective plasma frequency, vp8, of the CMM is actually substantially lower than the wires-only plasma frequency, vp; furthermore, the in-plane wires, as opposed to the off-plane case, push the magnetic resonance frequency of the SRRs, vm, to a higher value, vm8 , for the CMM. We conclude that the criterion for deciding whether a peak in the transmission spectrum through a CMM is really left-handed is for the peak to be located above vm8 and below vp8. Our results provide a definite way for experimentally identifying vp8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental observation of true left-handed transmission peaks in metamaterials.

We report true left-handed (LH) behavior in a composite metamaterial consisting of a periodically arranged split ring resonator (SRR) and wire structures. We demonstrate the magnetic resonance of the SRR structure by comparing the transmission spectra of SRRs with those of closed SRRs. We have confirmed experimentally that the effective plasma frequency of the LH material composed of SRRs and w...

متن کامل

Effect of disorder on magnetic resonance band gap of split-ring resonator structures.

We investigated the influence of periodicity, misalignment, and disorder on the magnetic resonance gap of split-ring resonators (SRRs) which are essential components of left handed-metamaterials (LHMs). The resonance of a single SRR which is induced by the split is experimentally demonstrated by comparing transmission spectra of SRR and closed ring resonator. Misaligning the SRR boards do not a...

متن کامل

A Novel Compact Dual Notch Band Filter Based on Metamaterial Concept

Using composite right-left handed (CRLH) transmission line concept, a novel miniaturized dual notch band filter (DNBF) is proposed. The suggested DNBF consists of an interdigital transmission line (ITL), split ring resonators (SRRs) and complementary split ring resonators (CSRRs). Since the resonance frequency of the SRRs and CSRRs are quite independent of each other, the dual notch bands of th...

متن کامل

Miniaturized High-Pass Filter Based on Balanced Composite Right-Left Handed Transmission Line Using Meander Spiral Complementary Split Ring Resonators

In this paper, a compact high-pass filter (HPF) with a sharp rejection response based on the balanced composite right-left handed (CRLH) transmission line (TL) concept is proposed. A series LC resonator using an interdigital capacitor and meander lines is designed. Also, a meander spiral complementary split ring resonator (MSCSRR) is used to realize the parallel LC resonator. The high-pass filt...

متن کامل

Passive Diplexers and Active Filters based on Metamaterial Particles

Composite transmission lines are one of the main developments in the increasingly popular field of electromagnetic metamaterials, artificial electromagnetic structures with both negative electric permittivity and magnetic permeability (Caloz & Itoh, 2005). These structures present a backward wave or left-handed (LH) propagation instead of the conventional right-handed one. The first experimenta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004